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Abstract 

This paper analyzed the equation describing the conduction of heat in a solid rod as 
proposed by Fourier’s law of conduction. The paper aims at proposing a variant 
model for describing the conduction of heat in a solid rod using Runge-Kutta method. 
The research was carried out by studying the effect of heating a rod and deriving a 
variant model using Runge-kutta method. The derived model was then simulated 
using matlab to evaluate its performance. The results show that when the time of 
heating is increased from 1.25 secs to 6 secs at an interval of 0.25secs, the 
temperature of the rod increased from 5000 kelvin to 5011.25 kelvin which affirms 
that the derived Runge-Kutta based model effectively described the conduction of 
heat in a solid rod. 
Keywords: Fourier law of conduction, heat transfer, thermodynamics and RK4.  
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Introduction. 

Heat transfer is defined as energy-in-transit due to temperature difference. 

Heat transfer takes place whenever there is a temperature gradient within a system 

or whenever two systems at different temperatures are brought into thermal contact. 

Heat, which is energy-in-transit, cannot be measured or observed directly, but the 

effects produced by it can be observed and measured. Since heat transfer involves 

transfer and/or conversion of energy, all heat transfer processes must obey the first 

and second laws of thermodynamics. However unlike thermodynamics, heat transfer 

deals with systems not in thermal equilibrium and using the heat transfer laws it is 

possible to find the rate at which energy is transferred due to heat transfer. 

Conduction heat transfer phenomena are found throughout virtually all of the 

physical world and the industrial domain. Thermodynamics deals with the end states 

of the processes and provides no information on the physical mechanisms that 

caused it. Heat transfer is an example of such a process. A convenient definition of 

heat transfer is energy in transition due to temperature differences (Chris and Naser 

2009). Conduction occurs at molecular level when a temperature gradient exists in a 

medium, which can be solid or fluid. Heat is transferred along that temperature 

gradient by conduction. (Aluko, Oduwole and Alaje 2014) presented Numerical 

Simulation of heat transfer of a lumped mass and analyses heat transfer problem of 

a lumped mass. A comparative analysis was carried out for investigating the 

behavior of the result of the existing and proposed models. The comparison shows 

that the newly proposed model based on Runge-Kutta yielded better results than 

existing solution.  

Understanding the dynamical origin of the mechanisms which underlie the 

phenomenology of heat conduction has remained one of the major open problems of 

statistical mechanics ever since Fourier’s seminal work (Fourier 1822). Fourier 

contribution states the nature and content of the heat conduction process, which is 

the transient heat diffusion equation, pertaining to the conductive transport and 

storage of heat in a solid body. The body itself, of finite shape and size, 

communicates with the external world by exchanging heat across its boundary. 

Within the solid body, heat manifests itself in the form of temperature, which can be 

measured accurately. Under these conditions, Fourier's differential equation 

mathematically describes the rate at which temperature is changing at any location 

in the interior of the solid as a function of time. Physically the equation describes the 
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conservation of heat energy per unit volume over an infinitesimally small volume of 

the solid centered at the point of interest. Crucial to such conservation of heat is the 

recognition that heat continuously moves across the surfaces bounding the 

infinitesimal element as dictated by the variation of temperature from place to place 

within the solid and that the change in temperature at a point reflects the change in 

the quantity of heat stored in the vicinity of the point. It is clear from the above that 

the notions of temperature, quantity of heat, and transport of heat, as well as the 

relation between quantity of heat and temperature, are fundamental to Fourier's heat 

conduction model. It is important to recognize here that these basic notions were still 

evolving when Fourier developed his equation. Since heat can be readily observed 

and measured only in terms of temperature, the development of a reliable 

thermometer capable of giving repeatable measurements was critical to the growth 

of the science of heat. Objects are made up of matter and matter consists of atoms 

and particles. Particle that move around in an object possess kinetic energy. 

Increase in temperature increases the kinetic energy of a particle. 

The most basic method of heat transport is conduction. Pure conduction 

(diffusion) results in a medium with no bulk motion. Here, the microscopic collisions 

of particles due to a temperature gradient transfer energy from more energetic 

particles to less energetic particles. (Incorpera and De-Witt 2002) & (Joseph and 

Preziosi1989) derived the equations describing the conduction of heat in solids have 

proved to be powerful tools for analyzing not only the transfer of heat, but also an 

enormous array of diffusion-like problems appearing in physical, chemical, biological, 

earth and even economic and social sciences. This is because the conceptual 

mathematical structure of the non-stationary heat conduction equation, also known 

as the heat diffusion equation, has inspired the mathematical formulation of several 

other physical processes in terms of diffusion, such as electricity flow, mass 

diffusion, fluid flow, photons diffusion, etc (Mandelis, 2000; Marín, 2009a). A review 

on the history of the Fourier´s heat conduction equations and how Fourier´s work 

influenced and inspired others can be found elsewhere (Narasimhan, 1999). 

Moreover, the temperature, the basic parameter of Thermodynamics, may not be 

defined at very short length scales but only over a length larger than the phonons 

mean free paths, since its concept is related to the average energy of a system of 

particles (Cahill, et al., 2003;Wautelet & Duvivier, 2007). On the other hand there are 

some aspects of the heat conduction through solids heated by time varying sources 
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that contradict common intuition of many people, being the subject of possible 

misinterpretations. The same occurs with the understanding of the role of thermal 

parameters governing these phenomena. 

It is therefore desirable to apply a popular method such as Runge-Kutta method to 

derive a variant model that can adequately describe the behaviour of heat 

conduction in a solid rod, which is the aim of carrying out this research. 

 

The Existing Model. 

Consider the constant cross-sectional-area rod. Heat diffusion transfers energy 

along the rod and energy is transferred from the rod to the surrounding by 

convection. An energy balance on the differential control volume yields 

 �̇� (𝑥) =  �̇� (𝑥 + 𝑑𝑥) +  𝑞�̇� (𝑥)          1 

which can be written as 

 �̇� (𝑥) = �̇�(𝑥) +  
𝑑

𝑑𝑥
[�̇�(𝑥)]𝑑𝑥 +  𝑞�̇�(𝑥)       2 

which yields 

 
𝑑

𝑑𝑥
 [�̇�(𝑥)]𝑑𝑥 +  𝑞�̇�(𝑥) =  0         3 

Heat diffusion is governed by Fourier’s law of conduction, which state that 

 �̇�(𝑥) = −𝐾𝐴
𝑑𝑇

𝑑𝑥
            4 

Where �̇�(𝑥) is the energy transfer rate (J/s) 

            K is the thermal conductivity of the solid (J/s-m-k) 

            A is the cross sectional area of the rod (m2) 

 
𝑑𝑇

𝑑𝑥
  is the temperature gradient (k/m) 

Heat transfer by convection is governed by Newton’s law of cooling 

            𝑞�̇�(𝑥) = ℎ𝐴(𝑇 − 𝑇𝑎)                                                                                              

5 

Where h is an empirical heat transfer coefficient (J/s-m2-K) 

 A is the surface area of the rod (A=Pdx, m2) 

 P is the perimeter of the rod (m) 

 Ta is the ambient temperature (K)  

‘-‘sign is a consequence of 2
nd 

law of thermodynamics (i.e., dT/dx must be 

negative). 
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Substituting eqn(4) and (5) into eqn(3) 

 
𝑑

𝑑𝑥
(−𝐾𝐴

𝑑𝑇

𝑑𝑥
) 𝑑𝑥 + ℎ(𝑃𝑑𝑥)(𝑇 − 𝑇𝑎) = 0      6 

For constant K, A and P eqn(6) yields 

 
𝑑2𝑇

𝑑𝑥2
=

ℎ𝑃

𝐾𝐴
(𝑇 − 𝑇𝑎) = 0                                                                                        

7 

which can be rewritten as 

            𝑇′′ − 𝛼2𝑇 =  −𝛼2𝑇𝑎         8 

Where 𝛼2 =  
ℎ𝑃

𝐾𝐴
 

Equation (8) is a linear second order boundary-value ordinary differential equation. 

General solution of (8) is  

 T(x) = 𝐴𝑒𝛼𝑥 +  𝐵𝑒−𝛼𝑥 + 𝑇𝑎         9 

Where 

 A= 
(𝑇2−𝑇𝑎)− (𝑇1−𝑇2)𝑒−𝛼𝐿

𝑒𝛼𝐿 − 𝑒−𝛼𝐿
 and B= 

(𝑇1−𝑇2)𝑒𝛼𝐿 –(𝑇2−𝑇𝑎)

𝑒𝛼𝐿−𝑒−𝛼𝐿
    10 

 

The Derived Variant Model. 

The variant model was derived by solving equation (8) above  using Runge-Kutta 

method. The simulation of the solution using matlab is as shown in figure 1 below 
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Figure 1: Graph of rod temperature against time for heat diffusion.  

 

 

 

 

 



 

201 OJASS; MARCH 2017 EDITION Volume 4 Number 1| 

 

Result and Discussion. 

Figure 1 shows the result of simulating the solution equation (8) by Runge-Kutta 

using matlab. 

From the result, it is observed that as the time of heating the solid rod increases from 

1.25 seconds to 6 seconds, the temperature increases from 5000 Kelvin to 5011.25 

Kelvin. This affirms that the derived model adequately described the conduction of 

heat by the rod based on the observed increase in temperature with corresponding 

increase in time of heating. 

  

Conclusion 

It is concluded from the result that the variant model proposed in this work can be 

used to adequately describe the conduction of heat by a solid rod.  
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